МІНЕРАЛЬНИЙ І ЖИРНОКИСЛОТНИЙ СКЛАД
ПЕРГИ БДЖІЛ ЗА РОЗМІЩЕННЯ ПАСІКИ В УМОВАХ
ОРГАНІЧНОГО ВИРОБНИЦТВА

І.І. Ковальчук, докторант
Р.С. Федорук, доктор ветеринарних наук, професор, член-кор НАН
Й.Ф. Рівіс, доктор сільськогосподарських наук
Інститут біології тварин НАН

Наведено дані про вміст мінеральних елементів і жирних кислот у перзі медоносних бджіл у кінці літнього періоду. Встановлено зменшення кількості Fe, Zn, Cu, Cr, Ni у зразках перги з пасіки за умов органічного виробництва. Утримання бджіл за агроекологічних умов органічного виробництва на пасіці в Чернігівській області порівняно з пасікою у Закарпатській області супроводжується нижчим вмістом окремих металів у продукції бджільництва.

Ключові слова: довкілля, бджоли, перга, екологічні умови, насичені і ненасичені жирні кислоти.

Питання безпеки та якості харчових продуктів є актуальною проблемою в багатьох країнах світу. У сучасних умовах якість продукції, виробленої аграрним сектором, пов’язується з її екологічною безпекою, що відповідає найкраще чинним вимогам за умов органічного виробництва. У зв’язку з цим, в Україні розвивається як екологічне, так і органічне землеробство, які забезпечують виробництво високоцінних органічних продуктів харчування, що володіють лікувально-профілактичною дією, до яких належить продукція бджільництва. [6, 7, 8, 9, 10].

Вимоги до органічного сільського господарства включають не тільки дотримання екологічних норм чистоти продуктів, але й оцінку та збереження навколишнього середовища. Біологічними індикаторами її оцінки є медоносні бджоли та якість їхньої продукції, оскільки вони забезпечують
швидке тестування збалансованості стану екосистеми, що є запорукою раннього виявлення негативного впливу агроекологічних умов на аграрне виробництво.

Метою нашої роботи було вивчити вміст окремих мінеральних елементів та жирнокислотний склад перги, зібраної у весняно-літній період за умов традиційного та органічного виробництва.

Матеріал і методика досліджень. Дослідження проводили, у весняно-літній період, на виробничих базах пасік, розміщених в гірській зоні Карпат – с. Вучкове Міжгірського району Закарпатської області (I група, контрольна) та сертифікованої пасіки щодо органічного виробництва в умовах Семенівського району Чернігівської області – с. Радомка ПСП «Дружба» (II група, дослідна). Сертифікацію пасіки виконано згідно з усіх вимог щодо органічного виробництва Інститутом екологічного маркетингу (ІМО, Швейцарія).

У весняно-літній період на дослідних пасіках у вказаних зонах з вуликів відбиравали зразки перги, зібраної медоносними бджолами карпатської породи, в яких на атомно-абсорбційному спектрофотометрі СП-115 визначали вміст окремих мінеральних елементів, а за методом газорідиної хроматографії на «Хром-5» – вміст жирних кислот [4, 5] і розраховували процентне їх співвідношення. Отримані результати опрацьовували статистично, з використанням критерія Стьюдента.

Результати досліджень. Перга – продукція бджільництва, на якість та біологічну цінність якої впливають інтенсивність цвітіння різних пілконосів і життєдіяльність та фізіологічні потреби бджіл. Обніжжя бджіл з пильку не всіх видів рослин відкладається в стільники, оскільки частина його з окремих рослин вживається відразу ж як корм, необхідний для життєдіяльності молодих бджіл. Перга відіграє роль фізіологічного регулятора біологічної повноцінності живлення організму бджіл. Відповідно й наявність перги у вулику є невід’ємною умовою для вирощування якісного розплоду, живлення бджіл, росту і розвитку бджолосімей, їх продуктивності, а також показником
екологічного стану навколишнього середовища [1–3].

Установлено, що вміст основних біогенних елементів у перзі медоносних бджіл ІІ групи за умов органічного виробництва був нижчим, ніж у перзі бджіл І групи за агроекологічних умов Карпат (табл. 1). Однак вірогідні зміни спостерігали щодо вмісту Fe, Zn, Cu, Ni та Cd. Зокрема, у зразках перги з вуликів ІІ групи вміст Fe, Zn та Cd був відповідно у 1,2, а Cu та Ni – у 1,3; 1,7 раза нижчим, ніж у перзі з вуликів контрольної (І) групи (р<0,05).

Аналогічні, проте не вірогідні, міжгрупові різниці спостерігали при дослідженні вмісту Cr, Pb та Co. У зразках ІІ дослідної групи рівень цих елементів був відповідно у 2,2; 1,08; 1,3 раза нижчим, ніж у перзі контрольної (І) групи.

Встановлені різниці вмісту окремих елементів у перзі, очевидно, пов’язані з впливом агроекологічних чинників на надходження їх у репродуктивну частину медоносних рослин і кумуляцію у продукції бджільництва, в т.ч. у перзі. Отже й рівень накопичення цих мікроелементів у пилку медоносних рослин у гірській зоні Карпат і за умов Полісся є різним, що вплинуло на показники їх вмісту в перзі бджіл з вуликів контрольної та дослідної груп.

1. Мінеральний склад перги, натуральної маси мг/кг, М±m, n=3

<table>
<thead>
<tr>
<th>Елемент</th>
<th>Група медоносних бджіл</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I-контрольна, пасіка в Карпатах</td>
<td>II-дослідна, пасіка в Поліссі</td>
<td></td>
</tr>
<tr>
<td>Залізо</td>
<td>41,42±1,08</td>
<td>35,29±1,63*</td>
<td></td>
</tr>
<tr>
<td>Цинк</td>
<td>33,33±2,69</td>
<td>27,32±1,91*</td>
<td></td>
</tr>
<tr>
<td>Мідь</td>
<td>6,00±0,24</td>
<td>4,50±0,47*</td>
<td></td>
</tr>
<tr>
<td>Хром</td>
<td>0,31±0,19</td>
<td>0,14±0,01</td>
<td></td>
</tr>
<tr>
<td>Нікель</td>
<td>1,33±0,17</td>
<td>0,77±0,01*</td>
<td></td>
</tr>
<tr>
<td>Свинець</td>
<td>0,52±0,10</td>
<td>0,48±0,02</td>
<td></td>
</tr>
<tr>
<td>Кадмій</td>
<td>0,69±0,003</td>
<td>0,60±0,004*</td>
<td></td>
</tr>
<tr>
<td>Кобальт</td>
<td>0,41±0,02</td>
<td>0,32±0,01</td>
<td></td>
</tr>
</tbody>
</table>

«Наукові доповіді НУБіП» 2012-7 (36) http://www.nbuv.gov.ua/e-journals/Nd/2012_7/12kiy.pdf
За результатами дослідження жирнокислотного складу продукції медоносних бджіл встановлено, що у першій бджіл групи спостерігали тенденцію до зниження більшості досліджуваних кислот, крім стеаринової та олеїнової порівняно до зразків перги I групи (табл. 2). Однак рівень стеаринової та олеїнової кислот був дещо вищим у зразках перги II групи. Вірогідно вищі різниці в середньому в 1,2 раза (r < 0,05), спостерігали при дослідженні вмісту лінолеової та ліноленової кислот у першій II групи порівняно до I групи. Встановлені відмінності очевидно, пов’язані як з видовим складом пилку, так і з впливом через організм бджіл природно-кліматичних умов на формування перги.

2. Жирнокислотний склад перги бджіл, M±m, n=3

<table>
<thead>
<tr>
<th>Жирні кислоти та код</th>
<th>Група медоносних бджіл</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I контрольна, пасіка в Карпатах</td>
</tr>
<tr>
<td></td>
<td>г'кг н. м.</td>
</tr>
<tr>
<td>Каприлова, 8:0</td>
<td>0,11±0,009</td>
</tr>
<tr>
<td>Капринова, 10:0</td>
<td>0,25±0,014</td>
</tr>
<tr>
<td>Лауринова, 12:0</td>
<td>0,74±0,020</td>
</tr>
<tr>
<td>Міристинова, 14:0</td>
<td>0,07±0,006</td>
</tr>
<tr>
<td>Пентадеканова, 15:0</td>
<td>0,01±0,000</td>
</tr>
<tr>
<td>Пальмітинова, 16:0</td>
<td>1,56±0,098</td>
</tr>
<tr>
<td>Пальмітоолеїнова, 16:1</td>
<td>0,07±0,006</td>
</tr>
<tr>
<td>Стеаринова, 18:0</td>
<td>0,31±0,026</td>
</tr>
<tr>
<td>Олеїнова, 18:1</td>
<td>1,31±0,087</td>
</tr>
<tr>
<td>Лінолева, 18:2</td>
<td>3,73±0,151</td>
</tr>
<tr>
<td>Ліноленова, 18:3</td>
<td>4,46±0,113</td>
</tr>
<tr>
<td>Загальний вміст жирних кислот</td>
<td>13,68</td>
</tr>
<tr>
<td>у т. ч. насыщени</td>
<td>3,12</td>
</tr>
<tr>
<td>ненасыщени</td>
<td>10,56</td>
</tr>
<tr>
<td>з них мононасыщенні</td>
<td>1,36</td>
</tr>
<tr>
<td>полінасыщени</td>
<td>9,20</td>
</tr>
</tbody>
</table>

«Наукові доповіді НУБіП» 2012-7 (36) http://www.nbuv.gov.ua/e-journals/Nd/2012_7/12kiy.pdf
Встановлено, що екологічні умови довкілля впливають також на загальний вміст жирних кислот у перзі. Так, загальний вміст жирних кислот, у перзі, з пасіки органічного виробництва був вищим, ніж у перзі бджіл за умов традиційного бджільництва. Підвищена загальна кількість жирних кислот у перзі ІІ групи зумовлена високим вмістом ненасичених жирних кислот, тоді як вміст мононенасичених жирних кислот істотно не змінювався.

Отже, в результаті проведених досліджень встановлено у перзі, зібраній бджолами, що утримувалися за агроекологічних умов органічного виробництва на пасіці в Чернігівській області порівняно з пасікою Міжгірського району Закарпатської області менший вміст мінеральних елементів і більший жирних кислот за винятком лінолевої і ліноленової, проте ця різниця невірогідна. Це дає підставу стверджувати про визначальний вплив агроекологічних умов розміщення пасік, зокрема, органічного виробництва, на живлення медоносних бджіл.

Висновки

1. Утримання бджіл за агроекологічних умов органічного виробництва на пасіці в Чернігівській області порівняно з екологічними умовами пасіки Закарпатської області супроводжується нижчим вмістом окремих мінеральних елементів і жирних кислот у перзі.

2. Уміст досліджених металів Fe, Zn, Cu, Cr, Ni, Pb, Cd, Co у перзі з гірської пасіки Карпат вищий, ніж з пасіки за умов органічного виробництва.

Список літератури


3. Поліщук В.П. Біологічні особливості живлення бджіл і збирання квіткового пилку в умовах поліфлорного взятку / В.П. Поліщук, О.А.


МИНЕРАЛЬНЫЙ И ЖИРНОКИСЛОТНЫЙ СОСТАВ ПЕРГИ ПЧЕЛ ПРИ РАЗМЕЩЕНИИ ПАСЕКИ В УСЛОВИЯХ ОРГАНИЧЕСКОГО ПРОИЗВОДСТВА

Ковальчук И.И. Федорук Р.С. Ривис И.Ф.

Представлены данные о содержании минеральных элементов и жирных кислот в перге медоносных пчел в конце летнего периода. Установлено уменьшение количества Fe, Zn, Cu, Cr, Ni в образцах перги с пасеки в условиях органического производства. Содержание пчел в
MINERAL AND FATTY ACIDS CONTENT BEEBREAD PLACING OF APIARIES IN THE CONDITIONS OF ORGANIC PRODUCTION

Kovalchuk I.I., Fedoruk R.S., Rivis Y.F.

The findings of mineral elements and fatty acid in beebread honeybee. The substantial are set reducing the number of Fe, Zn, Cu, Cr, Ni in the samples beebread with apiary organic production. Keeping bees by environmental conditions for organic production apiary in Chernihiv region compared to the apiary in the Transcarpathian region is accompanied by a lower content of certain metals in products of beekeeping.

Keywords: environment; honeybee; beebread; ecologic condition of environment; unsaturated fatty acid; saturated fatty acid.